Biosynthesis of mycobacterial phosphatidylinositol mannosides.

نویسندگان

  • Yasu S Morita
  • John H Patterson
  • Helen Billman-Jacobe
  • Malcolm J McConville
چکیده

All mycobacterial species, including pathogenic Mycobacterium tuberculosis, synthesize an abundant class of phosphatidylinositol mannosides (PIMs) that are essential for normal growth and viability. These glycolipids are important cell-wall and/or plasma-membrane components in their own right and can also be hyperglycosylated to form other wall components, such as lipomannan and lipoarabinomannan. We have investigated the steps involved in the biosynthesis of the major PIM species in a new M. smegmatis cell-free system. A number of apolar and polar PIM intermediates were labelled when this system was continuously labelled or pulse-chase-labelled with GDP-[3H]Man, and the glycan head groups and the acylation states of these species were determined by chemical and enzymic treatments and octyl-Sepharose chromatography respectively. These analyses showed that (1) the major apolar PIM species, acyl-PIM2, can be synthesized by at least two pathways that differ in the timing of the first acylation step, (2) early PIM intermediates containing a single mannose residue can be modified with two fatty acid residues, (3) formation of polar PIM species from acyl-PIM2 is amphomycin-sensitive, indicating that polyprenol phosphate-Man, rather than GDP-Man, is the donor for these reactions, (4) modification of acylated PIM4 with alpha1-2- or alpha1-6-linked mannose residues is probably the branch point in the biosyntheses of polar PIM and lipoarabinomannan respectively and (5) GDP strongly inhibits the synthesis of early PIM intermediates and increases the turnover of polyprenol phosphate-Man. These findings are incorporated into a revised pathway for mycobacterial PIM biosynthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of glycoconjugate fragments of mycobacterial phosphatidylinositol mannosides and lipomannan

Mycobacterium tuberculosis, the causitive agent of tuberculosis (TB), possesses a complex cell wall containing mannose-rich glycophospholids termed phosphatidylinositol mannosides (PIMs), lipomannan (LM), and lipoarabinomannan (LAM). These glycophospholipids play important roles in cell wall function and host-pathogen interactions. Synthetic PIM/LM/LAM substructures are useful biochemical tools...

متن کامل

Molecular recognition and interfacial catalysis by the essential phosphatidylinositol mannosyltransferase PimA from mycobacteria.

Mycobacterial phosphatidylinositol mannosides (PIMs) and metabolically derived cell wall lipoglycans play important roles in host-pathogen interactions, but their biosynthetic pathways are poorly understood. Here we focus on Mycobacterium smegmatis PimA, an essential enzyme responsible for the initial mannosylation of phosphatidylinositol. The structure of PimA in complex with GDP-mannose shows...

متن کامل

Defining the Interaction of Human Soluble Lectin ZG16p and Mycobacterial Phosphatidylinositol Mannosides.

ZG16p is a soluble mammalian lectin that interacts with mannose and heparan sulfate. Here we describe detailed analysis of the interaction of human ZG16p with mycobacterial phosphatidylinositol mannosides (PIMs) by glycan microarray and NMR. Pathogen-related glycan microarray analysis identified phosphatidylinositol mono- and di-mannosides (PIM1 and PIM2) as novel ligand candidates of ZG16p. Sa...

متن کامل

New insights into the biosynthesis of mycobacterial lipomannan arising from deletion of a conserved gene.

Genetic construction of a mutant strain (designated MSMEG4245) of Mycobacterium smegmatis, defective in a broadly conserved gene for a putative glycosyltransferase of the glycosyltransferase-C superfamily, results in a phenotype marked by the virtual absence of the phosphatidylinositol-containing lipomannan and lipoarabinomannan, replaced instead by a novel truncated form of lipomannan. The nor...

متن کامل

Mannose metabolism is required for mycobacterial growth.

Mycobacteria are the causative agents of tuberculosis and several other significant diseases in humans. All species of mycobacteria synthesize abundant cell-wall mannolipids (phosphatidylinositol mannosides, lipoarabinomannan), a cytoplasmic methylmannose polysaccharide and O-mannosylated glycoproteins. To investigate whether these molecules are essential for mycobacterial growth, we have gener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 378 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2004